Algorithms for k-meet-semidistributive lattices

نویسندگان

  • Laurent Beaudou
  • Arnaud Mary
  • Lhouari Nourine
چکیده

In this paper we consider k-meet-semidistributive lattices and we are interested in the computation of the set-colored poset associated to an implicational base. The parameter k is of interest since for any nite lattice L there exists an integer k for which L is k-meetsemidistributive. When k = 1 they are known as meet-semidistributive lattices. We rst give a polynomial time algorithm to compute an implicational base of a k-meet-semidistributive lattice from its associated colored poset. In other words, for a xed k, nding a minimal implicational base of a k-meet-semidistributive lattice L from a context (FCA literature) of L can be done not just in output-polynomial time (which is open in the general case) but in polynomial time in the size of the input. This result generalizes that in [26]. Second, we derive an algorithm to compute a set-colored poset from an implicational base which is based on the enumeration of minimal transversals of an hypergraph and turns out to be in polynomial time for k-meet-semidistributive lattices [20, 13]. Finally, we show that checking whether a given implicational base describes a k-meet-semidistributive lattice can be done in polynomial time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruence Lattices of Congruence Semidistributive Algebras

Nearly twenty years ago, two of the authors wrote a paper on congruence lattices of semilattices [9]. The problem of finding a really useful characterization of congruence lattices of finite semilattices seemed too hard for us, so we went on to other things. Thus when Steve Seif asked one of us at the October 1990 meeting of the AMS in Amherst what we had learned in the meantime, the answer was...

متن کامل

Embedding Finite Lattices into Finite Biatomic Lattices

For a class C of finite lattices, the question arises whether any lattice in C can be embedded into some atomistic, biatomic lattice in C. We provide answers to the question above for C being, respectively, — The class of all finite lattices; — The class of all finite lower bounded lattices (solved by the first author’s earlier work). — The class of all finite join-semidistributive lattices (th...

متن کامل

2 2 Ja n 20 05 EMBEDDING FINITE LATTICES INTO FINITE BIATOMIC LATTICES

For a class C of finite lattices, the question arises whether any lattice in C can be embedded into some atomistic, biatomic lattice in C. We provide answers to the question above for C being, respectively, — The class of all finite lattices; — The class of all finite lower bounded lattices (solved by the first author's earlier work). — The class of all finite join-semidistributive lattices (th...

متن کامل

Interval Dismantlable Lattices

A finite lattice is interval dismantlable if it can be partitioned into an ideal and a filter, each of which can be partitioned into an ideal and a filter, etc., until you reach 1-element lattices. In this note, we find a quasi-equational basis for the pseudoquasivariety of interval dismantlable lattices, and show that there are infinitely many minimal interval non-dismantlable lattices. Define...

متن کامل

Join-semidistributive Lattices of Relatively Convex Sets

We give two sufficient conditions for the lattice Co(Rn, X) of relatively convex sets of Rn to be join-semidistributive, where X is a finite union of segments. We also prove that every finite lower bounded lattice can be embedded into Co(Rn, X), for a suitable finite subset X of Rn.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 658  شماره 

صفحات  -

تاریخ انتشار 2017